Packing hamilton cycles in random and pseudo-random hypergraphs
نویسندگان
چکیده
We say that a k-uniform hypergraph C is a Hamilton cycle of type `, for some 1 ≤ ` ≤ k, if there exists a cyclic ordering of the vertices of C such that every edge consists of k consecutive vertices and for every pair of consecutive edges Ei−1, Ei in C (in the natural ordering of the edges) we have |Ei−1 \ Ei| = `. We prove that for k/2 < ` ≤ k, with high probability almost all edges of the random k-uniform hypergraph H(n, p, k) with p(n) log n/n can be decomposed into edge-disjoint type ` Hamilton cycles. A slightly weaker result is given for ` = k/2. We also provide sufficient conditions for decomposing almost all edges of a pseudo-random k-uniform hypergraph into type ` Hamilton cycles, for k/2 ≤ ` ≤ k. For the case ` = k these results show that almost all edges of corresponding random and pseudo-random hypergraphs can be packed with disjoint perfect matchings.
منابع مشابه
Packing Tight Hamilton Cycles in Uniform Hypergraphs
We say that a k-uniform hypergraph C is a Hamilton cycle of type `, for some 1 ≤ ` ≤ k, if there exists a cyclic ordering of the vertices of C such that every edge consists of k consecutive vertices and for every pair of consecutive edges Ei−1, Ei in C (in the natural ordering of the edges) we have |Ei−1 \ Ei| = `. We define a class of ( , p)-regular hypergraphs, that includes random hypergraph...
متن کاملTight Hamilton cycles in random uniform hypergraphs
In this paper we show that e/n is the sharp threshold for the existence of tight Hamilton cycles in random k-uniform hypergraphs, for all k ≥ 4. When k = 3 we show that 1/n is an asymptotic threshold. We also determine thresholds for the existence of other types of Hamilton cycles.
متن کاملOn Spanning Structures in Random Hypergraphs
In this note we adapt a general result of Riordan [Spanning subgraphs of random graphs, Combinatorics, Probability & Computing 9 (2000), no. 2, 125–148] from random graphs to random r-uniform hypergaphs. We also discuss several spanning structures such as cube-hypergraphs, lattices, spheres and Hamilton cycles in hypergraphs.
متن کاملCounting and packing Hamilton `-cycles in dense hypergraphs
A k-uniform hypergraph H contains a Hamilton `-cycle, if there is a cyclic ordering of the vertices of H such that the edges of the cycle are segments of length k in this ordering and any two consecutive edges fi, fi+1 share exactly ` vertices. We consider problems about packing and counting Hamilton `-cycles in hypergraphs of large minimum degree. Given a hypergraph H, for a d-subset A ⊆ V (H)...
متن کاملHamilton cycles in quasirandom hypergraphs
We show that, for a natural notion of quasirandomness in k-uniform hypergraphs, any quasirandom k-uniform hypergraph on n vertices with constant edge density and minimum vertex degree Ω(nk−1) contains a loose Hamilton cycle. We also give a construction to show that a k-uniform hypergraph satisfying these conditions need not contain a Hamilton `-cycle if k − ` divides k. The remaining values of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 41 شماره
صفحات -
تاریخ انتشار 2012